Multitask Sparsity via Maximum Entropy Discrimination
نویسنده
چکیده
A multitask learning framework is developed for discriminative classification and regression where multiple large-margin linear classifiers are estimated for different prediction problems. These classifiers operate in a common input space but are coupled as they recover an unknown shared representation. A maximum entropy discrimination (MED) framework is used to derive the multitask algorithm which involves only convex optimization problems that are straightforward to implement. Three multitask scenarios are described. The first multitask method produces multiple support vector machines that learn a shared sparse feature selection over the input space. The second multitask method produces multiple support vector machines that learn a shared conic kernel combination. The third multitask method produces a pooled classifier as well as adaptively specialized individual classifiers. Furthermore, extensions to regression, graphical model structure estimation and other sparse methods are discussed. The maximum entropy optimization problems are implemented via a sequential quadratic programming method which leverages recent progress in fast SVM solvers. Fast monotonic convergence bounds are provided by bounding the MED sparsifying cost function with a quadratic function and ensuring only a constant factor runtime increase above standard independent SVM solvers. Results are shown on multitask datasets and favor multitask learning over single-task or tabula rasa methods.
منابع مشابه
Multi-View Maximum Entropy Discrimination
Maximum entropy discrimination (MED) is a general framework for discriminative estimation based on the well known maximum entropy principle, which embodies the Bayesian integration of prior information with large margin constraints on observations. It is a successful combination of maximum entropy learning and maximum margin learning, and can subsume support vector machines (SVMs) as a special ...
متن کاملAn Inequality with Applications to Structured Sparsity and Multitask Dictionary Learning
From concentration inequalities for the suprema of Gaussian or Rademacher processes an inequality is derived. It is applied to sharpen existing and to derive novel bounds on the empirical Rademacher complexities of unit balls in various norms appearing in the context of structured sparsity and multitask dictionary learning or matrix factorization. A key role is played by the largest eigenvalue ...
متن کاملDetermination of Maximum Bayesian Entropy Probability Distribution
In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.
متن کاملStat 538 Project: Implementation of Maximum Entropy Discrimination with a Linear Discriminant Function
For this project, our goal was to implement Maximum Entropy Discrimination (MED) with a linear discrimination function for binary classification purposes. This technique was presented by Jaakola, Meila, and Jebara in “Maximum Entropy Discrimination” (1999). Their paper provides a generalized framework for discrimination that relies on the maximum entropy principle. One of the interesting aspect...
متن کاملFast Projections onto ℓ1, q -Norm Balls for Grouped Feature Selection
Joint sparsity is widely acknowledged as a powerful structural cue for performing feature selection in setups where variables are expected to demonstrate “grouped” behavior. Such grouped behavior is commonly modeled by Group-Lasso or Multitask Lasso-type problems, where feature selection is effected via `1,q-mixed-norms. Several particular formulations for modeling groupwise sparsity have recei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 12 شماره
صفحات -
تاریخ انتشار 2011